Aerogel glazing

General description

Aerogels are the world's lightest solid materials, composed of up to 99.8% air by volume. Most aerogels are based on silicium dioxide (SiO₂), like glass, but their density is about a 1000 times smaller. Because of their very high porosity, aerogels have the lowest thermal conductivity values of any solid. They considerably reduce the three phenomena of heat transfer: convection, conduction and radiation.

Since the transmittance of light in aerogels is relatively large, they can be used as semi-transparent glazing elements in daylight design. A space of 30 mm or 60 mm between two glass panels has a Uₜ value of respectively 0.6 W/m²K or 0.3 W/m²K. Both values are smaller than the value of 0.8 W/m²K required for windows according to passive house standards.

Availability on the market

In Belgium: unknown Abroad: Germany, U.S.A.

Advantages

- Although the thickness of the aerogel-based glazing may be high, its weight remains limited due to the relatively low density of the aerogel (3kg/m³).
- Unlike double and triple glazing, the Uₜ value of an aerogel-based glazing does not vary at all depending on the inclination of the glazed surface. The thermal insulation of horizontal and vertical surfaces is similar.
- The glass panes around the aerogel can be freely chosen.
- Aerogels are also very good acoustic insulators. (note: the acoustic performance of a window also depends on other characteristics)
- Aerogels seem to be resistant to UV and have high color stability.

Disadvantages / Constraints / Related issues

- Aerogel-based glazings transmit around 80% of light per 10 mm, meaning that an aerogel filling of 60 mm has a transmittance of approximately 30%. The transmitted light is diffused. Aerogels cannot be used in see-through windows, but their ability to diffuse the light can be an advantage to avoid glare and ensure a uniform lighting.

References

- http://www.usdaylight.com/nanogel

Disclaimer: This publication is edited with the largest possible care, using available public sources and producers' information. Attention should be paid to applicability in local circumstances and additional considerations (long term performance, state of validation, ...). The One Stop Shop authors cannot be held responsible for any damage to property or persons as a result of the use of this publication and/or its content.